Multipoint genetic mapping with trisomy data.

نویسندگان

  • J Li
  • S L Sherman
  • N Lamb
  • H Zhao
چکیده

Trisomy is the most common genetic abnormality in humans and is the leading cause of mental retardation. Although molecular studies that use a large number of highly polymorphic markers have been undertaken to understand the recombination patterns for chromosome abnormalities, there is a lack of multilocus approaches to incorporating crossover interference in the analysis of human trisomy data. In the present article, we develop two statistical methods that simultaneously use all genetic information in trisomy data. The first approach relies on a general relationship between multilocus trisomy probabilities and multilocus ordered-tetrad probabilities. Under the assumption that no more than one chiasma exists in each marker interval, we describe how to use the expectation-maximization algorithm to examine the probability distribution of the recombination events underlying meioses that lead to trisomy. One limitation of the first approach is that the amount of computation increases exponentially with the number of markers. The second approach models the crossover process as a chi(2) model. We describe how to use hidden Markov models to evaluate multilocus trisomy probabilities. Our methods are applicable when both parents are available or when only the nondisjoining parent is available. For both methods, genetic distances among a set of markers can be estimated and the pattern of overall chiasma distribution can be inspected for differences in recombination between meioses exhibiting trisomy and normal meioses. We illustrate the proposed approaches through their application to a set of trisomy 21 data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multipoint estimation of genetic maps for human trisomies with one parent or other partial data.

Centromeric-mapping methods have been used to investigate the association between altered recombination and meiotic nondisjunction in humans. For trisomies, current methods are based on the genotypes from a trisomic offspring and both parents. Because it is sometimes difficult to obtain samples from both parents and because the ability to use sources of DNA previously not available (e.g., store...

متن کامل

Rapid multipoint linkage analysis of recessive traits in nuclear families, including homozygosity mapping.

Homozygosity mapping is a powerful strategy for mapping rare recessive traits in children of consanguineous marriages. Practical applications of this strategy are currently limited by the inability of conventional linkage analysis software to compute, in reasonable time, multipoint LOD scores for pedigrees with inbreeding loops. We have developed a new algorithm for rapid multipoint likelihood ...

متن کامل

Parametric and nonparametric linkage analysis: a unified multipoint approach.

In complex disease studies, it is crucial to perform multipoint linkage analysis with many markers and to use robust nonparametric methods that take account of all pedigree information. Currently available methods fall short in both regards. In this paper, we describe how to extract complete multipoint inheritance information from general pedigrees of moderate size. This information is captured...

متن کامل

Down syndrome: genetic recombination and the origin of the extra chromosome 21.

Despite the clinical importance of trisomy 21, we have been ignorant of the causes of meiotic nondisjunction of chromosome 21. Recently, however, genetic mapping studies of trisomy 21 families have led to the identification of the first molecular correlate of human nondisjunction; i.e. altered levels and positioning of meiotic recombinational events. Specifically, increases in 0 exchange events...

متن کامل

Constructing and Joining Maximum Likelihood Genetic Maps

We present CART HAGENE a new piece of software for genetic mapping. Compared to existing genetic mapping softwares, CART HAGENE has both strengths and weaknesses. The most important weakness is certainly its actual limitation to backcross-like pedigree. However, when CART HAGENE applies, it is able to order markers and produce maximum multipoint likelihood marker maps with a large number of mar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of human genetics

دوره 69 6  شماره 

صفحات  -

تاریخ انتشار 2001